“Making Something Out of Nothing”: PCR Tests, CT Values and False Positives – Global Research


29-03-21 11:07:00,

All Global Research articles can be read in 27 languages by activating the “Translate Website” drop down menu on the top banner of our home page (Desktop version).


The efficacy of the RT-PCR test used to identify infection by the SARS-CoV-2 virus and ”cases” of the Covid-19 disease is widely disputed. In these discussions it is often maintained that the test produces 97% false positives. Reference for that claim is made to a study by a Marseille-based group who communicated their results in a letter to the editor on September 28th, 2020.[1]

The first author is R. Jaafar, so it is hereafter referred to as the Jaafar-paper. It represents an expanded data set compared to an earlier study[2] spearheaded by B. La Scola. This publication is referred to as the La Scola-paper.

In sum, the results presented in the Jaafar-paper do not provide a stand-alone proof for the test producing 97% false positives. The present comment is an attempt to distil the essential conclusions from their data.

In the semi-public domain, it has been another matter of confusion that the abbreviation “RT-PCR” is sometimes referred to as “Reverse Transcriptase Polymerase Chain Reaction”, while in other cases one may see it explained as “Real Time PCR”.

It is both. It is Real Time RT-PCR.

The enzyme reverse transcriptase addresses single-stranded RNA fragments in the swab and converts them into double-stranded DNA in a series of steps. Thereafter, the polymerase enzyme begins to make copies of selected DNA. The selection is determined by a pair of so-called primers which are necessary for initiating the process.

The replication occurs in cycles. Each cycle begins by heating the sample in order to separate the DNA double-helix into two free DNA strands. These serve as templates for the polymerase to produce complementary strands of each out of the building blocks present in the soup. Upon cooling the strands recombine. The cycle has ended. The result is a doubling of the number of DNA molecules present prior to the cycle.

During production the DNA is tagged by a probing molecule which fluoresces only when it is incorporated into the DNA. Thus, the sample emits visible light when irradiated with a little laser.

 » Lees verder

%d bloggers liken dit: